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Abstract— This work presents a simple linear policy for direct
force control for quadrupedal robot locomotion. The motivation
is that force control is essential for highly dynamic and agile
motions. We learn a linear policy to generate end-foot trajectory
parameters and a centroidal wrench, which is then distributed
among the legs based on the foot contact information using a
quadratic program (QP) to get the desired ground reaction
forces. Unlike the majority of the existing works that use
complex nonlinear function approximators to represent the RL
policy or model predictive control (MPC) methods with many
optimization variables in the order of hundred, our controller
uses a simple linear function approximator to represent policy
along with only a twelve variable QP for the force distribution.
A centroidal dynamics-based MPC method is used to generate
reference trajectory data, and then the linear policy is trained
using imitation learning to minimize the deviations from the
reference trajectory. We demonstrate this compute-efficient
controller on our robot Stoch3 in simulation and real-world
experiments on indoor and outdoor terrains with push recovery.

Keywords: Quadruped Robots, Reinforcement Learning,
Model Predictive Control (MPC), Linear policy

I. INTRODUCTION

The domain of quadrupedal robot locomotion, despite
having a high degree of underactuation, has reached a sig-
nificant level of maturity today with several methodologies
being successfully developed and deployed [1], [2], [3], [4].
There are classical control-based methods on one side of
the spectrum and end-to-end learning-based methods on the
other side. Classical control methodologies like Model Pre-
dictive Control (MPC) use system dynamics to get an optimal
control policy for a broad class of locomotion behaviors
[1], [5], [6]. Typically, MPC solves an optimization problem
over some finite horizon subject to constraints imposed by
dynamics and actuator limits to calculate the push forces
for the legs. Quadratic programming (QP) based solvers
are a popular choice for solving this optimization problem,
however, some of the recent works extensively use nonlinear
solvers [7], [4].
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Fig. 1: High-level overview of the proposed learning pipeline

Learning-based methods, on the other hand, achieve lo-
comotion by reinforcement learning (RL), i.e., learn a pol-
icy that maximizes some reward criterion by continuously
interacting with the environment. It has been shown that
RL control policies can learn to tackle unexpected contacts
and slippage by exploring different types of actions with
the environment [2], [3], [8], [9]. Also, a robust policy can
be trained by adding adversarial disturbances like different
friction conditions and perturbing forces. These will account
for external disturbances or model mismatches during the
deployment phase. Nevertheless, most of these methods use
complex and hierarchical neural network based policies that
are computationally costly. Also, these policies are some-
times hard to train due to the problems of multiple local
minima and the tedious tuning of hyper-parameters.

Despite being more computationally efficient than the
deep RL frameworks, MPC frameworks require extensive
modeling and construction of the optimization problem in
every time step. On the other hand, Deep RL frameworks
have the ability to automatically realize walking without
the need for extensive modeling, but suffer from sim-to-
real transfer problems. Therefore, several works have tried to
combine these two methods to achieve the best of both over
the years. GLiDE [10] uses the centroidal model to develop
a Deep RL policy that predicts the desired accelerations,
which are transformed into ground reaction forces using
a QP. MPC-net [11] learns a mixture-of-networks (MEN)
policy guided by an MPC controller using Imitation learning.
Since these works use neural networks (multiple in case of
[11]), on-board computation becomes expensive at run time.
Hence, in this work, we would like to answer a fundamental
question: Can we identify a different class of policies that
are simpler than the MPC, RL frameworks in terms of
hardware deployment, and yet be effective enough for robust
locomotion in quadrupeds?
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Our main motivation for pursuing a simpler class of
policies is the classical Raibert’s controllers [12], which were
instrumental in realizing robust locomotion on monopeds,
bipeds and quadrupeds. They were very simple and yet very
effective for robust locomotion. In a similar vein, linear
policies were developed in [13], [14], [15], with the idea of
shaping the end-foot trajectories based on sensory feedback
from motors and IMU. It was observed that learning a simple
linear policy was sufficient to achieve stable locomotion on
sloped terrains in both bipeds and quadrupeds [16], [14].
However, the agility and robustness shown in these works are
still not comparable with what have been achieved with the
more advanced MPC; hopping, jumping [17] and back-flips
[6] have been shown in quadrupeds. Therefore, a primary
goal of this paper is to develop a learning based framework
that can incorporate MPC based force controllers, but with
a significantly lower computational load. In other words,
instead of generating force controllers from a model based
framework like the MPC, we learn a linear policy that
generates the force, torque and trajectory commands directly,
yielding a light-weight and a robust control framework
for quadrupeds. Thus our contributions can be summarized
below:

• We introduce a novel action space consisting of foot
trajectory parameters and the desired wrench on the
body. The wrench is used in the QP to convert and
distribute the desired ground reaction forces among the
legs, thus resulting in a computationally lightweight
controller.

• We use a modified Policy Gradients with Parameter
Exploration (PGPE), a simple evolutionary gradient-free
algorithm for imitation learning of the linear policy,
instead of complex gradient-based RL algorithms. The
training time was < 30 minutes.

An overview of our proposed framework can be seen in Fig.
1 and Fig. 3. We use data generated from a single rigid
body dynamics based MPC to train the linear policy. The
data includes states of the rigid body like positions and
velocities and forces. Reinforcement learning is then used
to imitate this trajectory in the custom quadruped, Stoch3,
in a simulator (pybullet). The linear policies are trained using
PGPE and directly transferred to hardware. We provide both
simulation and experimental videos in the supplement.

The paper’s organization is as follows: Section II will go
through the robot model, notations, and hardware specifica-
tions. Section III describes the linear policy and the walking
controller. Section IV describes the training and evaluation
methods used. Section V summarizes the simulation results,
assessments, and hardware tests. Finally, Section VI con-
cludes our work.

II. ROBOT DESCRIPTION

Stoch-3, as shown in Fig 2, is a custom-built dynamic
quadruped robot developed for rapid prototyping of learning-
based controllers. This section will briefly describe the
accompanying actuators, sensors, and kinematics framework.

Fig. 2: An illustration of Stoch3 hardware platform. The
symbols FL, FR, BL, BR, represent the front-left, front-
right, back-left, and back-right legs respectively. The dashed
curve shows the ideal end-foot trajectory generated by the
trajectory generator, and bold curve in pink shows trajectory
modified by the linear policy

1) Actuation: Overall, the robot model consists of 6
floating and 12 actuated Degrees of Freedom (DoF). The
actuators are custom built with a high torque density motor
and a 1:6 gear reduction. The actuators can measure joint
angles and torques via joint encoders and current sensors.
The nominal torque provided by the motors is 18 Nm.

2) Onboard Computation: We use a Raspberry-Pi 4b
(RPi) microcomputer for running all the high-level con-
trollers. The mjbots pi3hat board is used for low-level
communication between the RPi and the actuators using
Control Area Network (CAN) communication.

3) Sensors: We have encoders connected to each motor
providing the angle and velocity information of the actuated
joints. For inertial measurement, we use an Xsens MTi-
610, which provides calibrated data on the 3-D orientation,
angular velocities and acceleration.

4) Kinematics: We treat each leg independently to derive
analytical relations for forward and inverse kinematics. Here
q1, q2, and q3 represent abduction, hip, and knee joints and
form a serial-3R kinematic chain as shown in Fig. 2.

III. CONTROL ARCHITECTURE

This section provides an overview of the control archi-
tecture. We use a linear policy as a high level controller to
provide high-level commands like the desired wrench and
foot shifts. Similarly, as a low level controller, we use a
Quadratic Program (QP) to distribute the forces among the
contact legs, and a trajectory generator to generate the foot
positions. Below the low level controller is a motor-level
controller that combines the feed-forward torque with a PD
tracking controller resulting in locomotion. Fig. 3 describes
this control architecture.

A. High Level controller

On a high-level, we treat the locomotion as an RL prob-
lem. The RL policy parameterizes the end-foot trajectories
and desired CoM wrench to speed up training. Our method
is similar to [13], [14], which uses a feedback mechanism to
alter the foot trajectories based on the current state. However,
those works only rely on PD tracking, whereas we also
include a force control component.



Fig. 3: Overview of the proposed control architecture

1) Observation Space: The observation space S ⊂ R28

consists of robot states such as walking height h, body
orientation in roll α, pitch β, yaw γ, the CoM twist V ∈ R6,
and foot contact boolean vector for each leg η, along with a
one-time-step history of all the mentioned states.

2) Action Space: The action space A ⊂ R18 represents
the instantaneous shifts ξ ∈ R12 and desired CoM wrench
Fb ∈ R6 in body frame. The shifts are translational trans-
forms for the leg trajectories of the robot in the body frame.
These shifts and the desired wrench allow us to incorporate
reactive and robust force control behaviors.

3) Linear policy: We choose the our policy to be π(s) :=
M(θ)s, where M ∈ R18×28 is a linear mapping from
observation space to action space, s ∈ S and θ represents the
parameters. To make our policies robust in stochastic envi-
ronments, we sample θ from a normal distribution N (µ, σ)
after each episode. Thus the training algorithm learns the µ
and σ for the distribution. More details on the training are
in Section IV.

B. Low Level Controller

Low-level controller consists of trajectory generator for
generating the foot trajectories for the swing and stance legs,
and a QP solver to distribute the wrench among stance legs.
Swing/Stance state of the leg is determined using the foot
contact estimation based on the torque feedback from the
actuators.

1) Trajectory generator: Trajectory generator takes the
commands (desired linear and angular velocity command
vd, ωd) from the joystick along with gait parameters (gait
type, swing time Tsw, stance time Tst, swing height hsw,
walking height h0) to calculate the touch-down point of the
swing leg. For simplicity, we will show the trajectory gen-
eration for a single ith leg (i ∈ {FL, FR, BL, BR}), which
can be extended to other legs easily. The foot placement for
the swing leg is determined using the Raibert heuristic [12],

and the instantaneous shifts ξ coming from the policy,

ρxy =
vdTst

2
+ ξixy (1)

where ρxy is the desired step location on ground plane, ξixy
are the x, y components of the shifts for the ith leg. From
the classical viewpoint, shifts are similar to the capture-point
feedback term [18] used for push recovery. However, this
capture-point requires certain model assumptions and only
depends on velocity feedback, which may not always hold
in all scenarios; hence the motivation to learn the shifts that
depend on multiple robot states. The leg trajectories for every
time step are generated as follows,

vcmd = vd + ωd × rxy

∆rxy =

{
ρxy−rxy

Tsw

π
π−ϕ ∆t , when in swing

−vcmd ∆t , when in stance

rxy,d = rxy +∆rxy

rz,d =

{
hsw sinϕ+ h0 + ξiz , when in swing
h0 + ξiz , when in stance

(2)

where ϕ ∈ [0, π] is the ith leg phase indicating the percentage
completion of swing time, ∆t is the control time-step, ξiz is
z component of the shifts for the ith leg, rxy represent the xy
components of the current foot position, and rxy,d and rz,d
represent the desired foot positions for the xy components
and z component respectively.

2) Wrench distribution using QP: When the leg is in
contact with the ground, we use the linear relationship
between Ground Reaction Forces (GRFs) f ∈ R12 and
desired wrench Fb acting on the body which is commonly
used in the classical control approaches [17], [19], [20]:[

I3 I3 I3 I3
r̂FL r̂FR r̂BL r̂BR

]
︸ ︷︷ ︸

A

f =

[
mg
03

]
+ Fb︸ ︷︷ ︸

b

, (3)



where I3 is the 3 × 3 identity matrix, r̂i is the skew-
symmetric matrix representing the cross product ri × f ,
[mg, 03]

T is the wrench due to gravity. The desired wrench
on CoM Fb after being inferred from the linear policy is
thus used to optimally distribute f using the following QP
problem:

f∗ = argmin
f∈R12

(Af − b)TH(Af − b) + fTPf

s.t. Cf ≥ d
(4)

where H is the weight matrix for determining the rel-
ative importance between the translational and rotational
dynamics, and P is for enforcing force normalization. The
constraints Cf ≥ d are applied to ensure the GRFs lie inside
the friction pyramid to avoid slippage and to ensure foot
contact conditions are satisfied. We use an open-source solver
qpSWIFT [21] for solving the QP, as it has been shown to
be computationally lightweight and efficient.

C. Motor level control
The command torques for the motors are generated dif-

ferently for the swing and stance legs. We still treat the legs
to be massless during the swing phase, which results in the
feedforward torque τswff = 0. To obtain feedback torques
for trajectory tracking, we use an inverse kinematics relation
to convert the desired foot positions to desired joint angles
qd ∈ R3, and a PD controller with appropriate gains K fb

p ,
K fb

d as follows,

τ sw
fb = K fb

p (qd − q) +K fb
d (q̇d − q̇) (5)

where, q ∈ R3 is the vector of joint angles, q̇ ∈ R3 is
the vector of joint velocities, and q̇d ∈ R3 is the vector of
desired joint velocities, which is obtained by numerically
differentiating qd. This is done for each leg i. Thus, the
command torques for the swing leg is obtained as τsw =
τswfb .

For the stance legs, we solve for feedforward torques
needed to achieve the GRF using τstff = −J(q)T f i

∗, where
J is the leg jacobian and f i

∗ is the desired GRF for the ith

leg. We still include PD trajectory tracking for stance legs
with low gains for safety. Thus, the final command torques
for stance leg τst is given by

τstfb = 0.1[K fb
p (qd − q) +K fb

d (q̇d − q̇)]

τst = τstff + τstfb.
(6)

IV. TRAINING FRAMEWORK

This section provides an overview of the training architec-
ture, i.e., learning the linear policy using imitation learning.
The main objective of this work is to enable the RL policy
to distill useful information from the dynamics model of the
robot to achieve robust locomotion.

A. Trajectory Generation using MPC
In this work, we train the RL agent to minimize the de-

viations from the reference trajectory generated by the MPC
controller [5] that uses the 3-D Single Rigid Body (SRB) Dy-
namics model of the following form ẋ := Ax+Bu. The state

vector for this MPC is given by x =
[
p ṗ R w

]
, where

p, ṗ are the linear position and velocity of the torso of the
robot and R,w are the angular orientation (represented as ro-
tation matrix) and angular velocities respectively. The action
vector for MPC is given by u =

[
fFL fFR fBL fBR

]
,

where f i is the desired ground reaction force at ith foot
contact. We generate the trajectory data D for an episode
which consists of (xt, ut) for every time-step (t). These are
the optimal state-action pairs solved by MPC to achieve a
commanded trajectory which is accelerating at 1 m/s2 until
reaching a velocity of 0.8 m/s. MPC uses a horizon length
of 6 and solves a QP problem in 144-variables to track the
desired trajectory.

B. Policy Training using PGPE

We use Policy Gradient with Parameter-Based Exploration
(PGPE) algorithm to train the control policy to maximize the
expected return. PGPE estimates the gradients by directly
sampling from the parameter space and is shown to have
lower variance in estimates compared to other standard
policy gradient methods [22]. In addition to original vanilla
PGPE implementation, we have made some enhancements
based on current literature such as,

• Solutions were fitness ranked linearly in the range of
-0.5 to 0.5, and their ranks were used for gradient
computation rather than raw reward values [23].

• σ updates that are more than 20% of the original values
are clipped to keep them stable. An idea similar to
Proximal Policy Optimization [24], where parameter
clipping is used to keep new policy within safe range
from old policy.

• Using Adam [25] optimizer to update the gradient of µ.

The policy learnt stable and robust locomotion from ref-
erence trajectories within 60 iterations, corresponding to
roughly 30 minutes. We used 128 parallel processes, two
(one in positive and the other in negative) corresponding to
each exploration direction. The maximum episode length was
1000 time steps in all experiments for training the policy.
Since the policy is linear, the training time was much less
than the latest works in this field, which usually lasts for
days and require millions of samples.

C. Domain Randomization

To increase the robustness we employ certain domain
randomization techniques, a common practice to make the
controller robust. We spawn the robot at random orientations
uniformly for torso roll, pitch, yaw in [0, π/6] at the start of
each episode. Friction parameters of the ground contact is
also sampled uniformly in [0.8, 1.2]. Lastly to account for
sudden undulations in the terrain, we fine-tune the learnt
policy on rough terrain with a varying height-field of ±5cm.
The performance of the learnt policy after enabling these
domain randomization methods can be seen in the simulation
videos provided.



D. Reward Function Formulation

The reward function is designed in such a way that the
the RL policy tracks the reference trajectory as close as
possible at every time step. Any deviation away from the
reference trajectory is penalised. We measure the deviation
from reference variables using a Gaussian kernel defined as
Gw,k(x, y) = w exp(−k∥x−y∥2), where w and k are scalar
weights. Since the states, actions used in MPC model and our
RL policy are different, we resort to appropriate conversions
whenever needed. The reward at any time-step is a linear
combination of multiple terms. The expression and weight
for each type of reward is mentioned in Table I. The variables
with superscript ref indicate the reference trajectory state and
actions, where as the ones without superscript are the current
state and actions.

TABLE I: Reward terms and weights

Reward term Expression (w, k)
linear position Gw,k(p

ref , p) (1, 10)
linear velocity Gw,k(ṗ

ref , ṗ) (1, 50)
orientation Gw,k(R

ref , R) (1, 50)
angular velocity Gw,k(ω

ref , ω) (1, 50)
GRF Gw,k(F

ref , F ) (30, 100)

Fig. 4: Graphs for walking height, orientation, linear-x veloc-
ity tracking and angular velocities on flat terrain in simulation

V. RESULTS

This section presents the simulation, hardware results and
behavioral analysis for stability and robustness. For training
purposes, we used a custom gym environment of Stoch3
based on the PyBullet physics simulator [26]. The current
work only considers the trot gait for walking, and we believe
this should be easily extendable to other gaits.

A. Simulation results

Fig. 4 shows the tracking performance of the learnt policy
on flat terrain in simulation. One can see that the linear
policy, along with 12-variable QP could extract optimal
behaviors from an MPC whose number of optimization vari-
ables is well beyond 100. We speculate that the linear policy
as a high-level controller, worked well because it enabled the
motor-level controller to handle the non-linearities associated
with leg kinematics and dynamics of the robot. We further
show that the proposed controller could handle outdoor ter-
rains and considerable external disturbances without explicit
MPC demonstrations for such scenarios.

B. Comparision with alternatives

We evaluated two policy types (linear vs. fully-connected
neural network) and two output types (wrench vs. GRFs)
from each type. The results indicated that using QP to
distribute the wrench was more effective than predicting
GRFs directly from the policy. We believe this is because QP
makes it easier to enforce friction-cone constraints. We found
that a linear policy was adequate for predicting the desired
wrench, making using a neural network policy unnecessary.
In addition, the linear policy’s simple structure made it easy
to transfer the learned policy onto the hardware with minimal
changes.

C. Hardware results

We successfully deployed the proposed controller on
hardware with minimal changes to the policy trained in
simulation. The results presented below are after clipping
foot shifts to avoid the legs going out of the kinematic
workspace. The wrench values were also bounded for safety.
To show the effectiveness of our controller, we performed
various experiments like walking on outdoor terrains with
external pushes and disturbances. All these experiments can
be seen in the video provided.

1) Direction controlled walking: We commanded the
robot to walk in multiple directions (forwards, backward,
and lateral) and at heading angles using joystick. This
enabled safe navigation in real-world scenarios. The pro-
posed controller exhibited zero-shot generalization to desired
commanded velocities. This was accomplished by designing
the linear policy as a feedback controller to ensure stabil-
ity (through the desired wrench) and using the trajectory
generator to guarantee robust command tracking (through
instantaneous shifts). We show that our controller can gen-
erate a stable walking gait by empirically analyzing the
phase portrait of the joints. Fig. 5 shows that the gait tends
to converge to a stable walking limit cycle on flat indoor
terrains, and that the foot forces applied by the controller
has a stable periodic pattern.

2) Disturbance rejection: Our experiments also included
pushing and kicking the robot in different directions multiple
times. Our controller recovered to stable configurations as
shown in Fig. 6. Our robot could handle pitch variations
of up to ±20° and roll variation of up to ±15°, thereby
validating the robustness.



Fig. 5: Phase portrait of joints (left), and force-magnitude profile (right) for the desired GRFs during trot

Fig. 6: Stoch3 recovering from external pushes (left), and the corresponding roll-pitch deviations (right)

Fig. 7: Joint data for torques, velocities and position for
uneven terrain testing

3) Walking on outdoor terrain: We showed that our con-
troller can handle outdoor surfaces, which are not necessarily
flat and controlled. Fig. 7 shows the joint data (positions,
velocity and torques), which has consistent variations w.r.t.
time. This shows that the proposed framework is robust in
real-world environments.

VI. CONCLUSION

In this work, we proposed a computationally efficient
control architecture consisting of a linear policy and a QP
that can achieve stable and robust locomotion and handle
external disturbances. We showed that our policy achieved
zero-shot generalization to commanded velocities from the
joystick and helped in direction-controlled walking for real-
world applications. We learnt the optimal behaviors from
a single trajectory of the MPC controller using imitation
learning. The training time was less than 30 minutes. We also
demonstrated the results on the actual robot by deploying the
policy on the hardware with minimal changes.
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